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Abstract

Laminar, fully developed ¯ow through single- and double-trapezoidal (or hexagonal) ducts is modeled using a

®nite-di�erence method. A coordinate transformation is employed to map the irregular ¯ow cross-section onto a
rectangular computational domain. Both H1 and T thermal boundary conditions are considered as they represent
the fundamental limiting conditions in most practical applications. Solutions for velocity and temperature variations
are obtained for a wide range of duct aspect ratios and with four di�erent trapezoidal angles. The friction factor

and Nusselt number results show a strong dependence on duct geometry (aspect ratio g and trapezoidal angle y ).
The variations of f Re, NuH1, and NuT with duct aspect ratio for each y-valued duct are presented in the form of
polynomials in g. These equations describe the computed numerical values within 22% for single-trapezoidal and

within 21.5% for hexagonal ducts and are of much importance to the design of compact heat exchangers. # 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

The importance of analytical and experimental

results for laminar forced convection in non-circular

ducts to the practical design of a variety of compact

heat exchangers cannot be overstated. In this study,

hydrodynamically and thermally fully developed heat

transfer in laminar ¯ows of viscous liquids through

single- and double-trapezoidal (hexagonal) ducts has

been analyzed. These geometries represent ¯ow chan-

nels of a variety of compact heat exchangers, as illus-

trated in Fig. 1. For example, the double-trapezoidal

duct shape is encountered in lamella type compact

heat exchangers, which ®nd extensive usage in pulp

and paper, alcohol, petrochemical and other chemical

industries [1,2]. Likewise, the inter-plate ¯ow channels

in plate heat exchangers with washboard type corru-

gated plates are double trapezoidal. Plate heat ex-

changers are also used in a wide range of applications

including food and chemical processing, refrigeration,

and waste-heat recovery, among others [3]. The single-

trapezoidal channel is employed in plate-®n heat

exchangers [4], and micro-channel electronic cooling

modules [5]. The hydraulic diameters of ¯ow channels

used in such heat exchangers are typically small and

the length-to-diameter ratio (L/dh) is relatively large.

Due to these length scales and the viscous nature of

the ¯uids being handled, the ¯ow is usually laminar

with fully developed conditions.

There has been considerable work on laminar

forced-convective heat transfer in non-circular ducts

reported in the literature. Shah and London [6], and

Shah and Bhatti [7] give extended reviews of a large

number of these studies. In some of the more recent

literature, several di�erent ¯ow cross-section ge-
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ometries found in newer compact heat exchanger appli-

cations have been addressed [8,9]. These include

double-sine [10], circular-segment [11], semi-circular

[12,13], eccentric-annular [14], rhombic [15], regular

polygonal [16], and several other unusual duct shapes

[17]. To obtain theoretical solutions for laminar ¯ow

and heat transfer in such channels, di�erent compu-

tational modeling techniques are usually employed and

SundeÂ n and Faghri [18], and Manglik and Bergles [9]

have discussed the application of several such method-

ologies.

Fully developed laminar ¯ow and heat transfer in a
straight trapezoidal duct was ®rst analyzed by Shah

[19]. Employing a least-square boundary-value point-

matching technique, series solutions for the velocity

distribution, Fanning friction factor, temperature dis-

tribution and Nusselt number for the H1 and H2

boundary conditions are presented. Trapezoidal duct

pro®les described by 308 R y R 758 and 0 < g<1
have been considered. More recently, using a similar

analytical technique, Flockart and Dhariwal [5] have

reported pressure-drop results for fully developed lami-

nar ¯ows in a trapezoidal duct with y=54.748.
Farhanieh and SundeÂ n [20] have reported graphical

results for Nusselt number variation in the thermal

entrance region of trapezoidal ducts with T boundary

condition. These results clearly demonstrate the strong

in¯uence of the duct geometry on the thermal±hy-

draulic behavior. Asako et al. [21] have reported nu-

merical solutions for periodically fully developed ¯ow

and heat transfer in a novel wavy (or zig-zag) channel

with a trapezoidal cross section. In both the latter stu-

dies, ®nite-di�erence techniques were employed.

In this paper, thermally and hydrodynamically fully

developed ¯ow through both single- and double-trap-

ezoidal (or hexagonal) ducts have been modeled using

a ®nite-di�erence method. By using a coordinate trans-

formation the irregular ¯ow geometry is mapped into

a rectangular computational domain. Solutions are

obtained for a wide range of duct aspect ratios with

four di�erent trapezoid angles. Two thermal boundary

conditions (H1 and T), that are representative of the

Nomenclature

b0, . . . , b7 constants in correlation for f Re and
Nu for ¯ow in single-trapezoidal duct,
Eq. (19)

2b maximum width of the trapezoidal
duct, Fig. 2, m

c height of the trapezoidal duct, Fig. 2, m

c0, . . . , c7 constants in correlation for f Re and
Nu for ¯ow in double-trapezoidal duct,
Eq. (20)

2d width of the top wall of the trapezoidal
duct, Fig. 2, m

dh hydraulic diameter, m
f Fanning friction factor

h dimensionless abscissa of the side-wall
of the duct, Eq. (1)

h ' (ÿ1/tan y )
h(y ) abscissa (distance from y=0) of the

side-wall of the trapezoidal duct, Fig. 2,
m

H1 axially uniform wall heat ¯ux with per-
ipherally uniform wall temperature con-
dition

H2 axially and peripherally uniform wall
heat ¯ux condition

k thermal conductivity of ¯uid, W/(m K)
L duct length, m

Nu hydraulic-diameter based Nusselt num-
ber

p pressure, Pa

Pe Peclet number
Pr Prandtl number
Re hydraulic-diameter based Reynolds

number
T dimensionless temperature, Eq. (2)
T temperature, K

Tb dimensionless mean or bulk ¯uid tem-
perature

T axially and peripherally uniform wall

temperature condition
w dimensionless axial ¯ow velocity, Eq.

(2)
w axial ¯ow velocity, m/s

wb dimensionless mean or average axial
¯ow velocity

x, y, z dimensionless Cartesian coordinates,

Eq. (1)
x, y, z Cartesian coordinates, m.

Greek symbols
a thermal di�usivity, m2/s

g aspect ratio of the trapezoidal duct, c/b
or c/2b, Fig. 2

y included angle of trapezoidal duct

cross-section, Figs. 1 and 2, degrees
m dynamic viscosity of the ¯uid, kg/(m s)
x, Z dimensionless transformed coordinates,

Eq. (6)
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fundamental limiting conditions in most practical ap-

plications, have been considered. The T condition

simulates, for example, heating of the process ¯uid

stream by condensing steam; on the other hand, H1

condition corresponds to heating or cooling in a two-

¯uid heat exchanger with equal capacity rates. Along

with the velocity and temperature distributions, the

friction factor and Nusselt number results for a wide

range of trapezoidal and double-trapezoidal duct ge-

ometries are presented.

2. Mathematical formulation

The coordinate system, geometrical features, and the

variables that describe the trapezoidal and double-

trapezoidal (hexagonal) duct cross sections are shown

in Fig. 2. Steady state, constant property, hydrodyna-

mically and thermally fully developed laminar ¯ows

are considered. These conditions prevail for most vis-

cous Newtonian liquid (Prr1) ¯ows in long ducts of

small hydraulic diameters (L/dh>>1). Furthermore,

Fig. 1. Applications of trapezoidal and hexagonal shapes in heat exchange devices: (a) double-trapezoidal duct and (b) single-trap-

ezoidal duct.
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axial conduction (Pe>>1) and viscous dissipation
(Br< 1) are neglected. Thus, for such ¯ow conditions,

by introducing the following dimensionless forms of
spatial variables, axial velocity, and temperature:

x � � �x=b�, y � � �y=b�, h � � �h=b� �1�

w � �w=��ÿdp=d �z ��b2=m��,

T � � �Tw ÿ �T �=��b2 �w b=a��d �T b=d �z ��
�2�

the momentum and energy conservation equations can
be written as

@ 2w

@x 2
� @

2w

@y2
� 1 � 0 �3�

@ 2T

@x 2
� @

2T

@y2
� ST � 0 �4�

where

ST �
� �w=wb��T=Tb� for T condition

�w=wb� for H1 condition

The governing equations are subject to no slip and uni-
form peripheral temperature conditions at the wall

that are represented by the following:

Double-trapezoidal duct: w � 0, T � 0 at

x �21, y �2g
�5a�

Trapezoidal duct: w � 0, T � 0 at x �21,

y �22g
�5b�

Furthermore, for double-trapezoidal ducts, in order to
conserve computational time the symmetry about the
x-axis is utilized and only half of the cross section is

considered, for which

�@w=@y�y�0 � 0, �@T=@y�y�0 � 0 �5c�

To solve the governing equations using numerical

methods, an appropriate grid needs to be developed to
represent the ¯ow cross section. It is clear from Fig. 2
that the sides of the duct do not conform to a recti-

linear coordinate line, and using Cartesian coordinates
will lead to half-grid cells and higher numerical errors.
To overcome these di�culties, a grid that conforms to

the boundaries of the duct is employed by e�ecting the
following coordinate transformations:

x � � �x= �h � �y �� � �x=h� y��, Z � � �y=c� � � yb=c�,

h � � �h � �y �=b�
�6�

This, in e�ect, maps the trapezoid/double-trapezoid

shape into a unit rectangle, and a representation of the
resulting computational grid is shown in Fig. 3. The
governing equations in the transformed coordinates

Fig. 2. Coordinate system and geometrical details of double-

and single-trapezoidal duct cross sections.

Fig. 3. A schematic representation of the computational

domain.
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can be expressed as�
1� x2h 02

h2

�
@ 2w

@x2
�
�
b2

c2

�
@ 2w

@Z2
�
�
2xh 02

h2

�
@w

@x

ÿ
�
2bxh 0

ch

�
@ 2w

@x @Z
� 1 � 0 �7�

�
1� x2h 02

h2

�
@ 2T

@x2
�
�
b2

c2

�
@ 2T

@Z2
�
�
2xh 02

h2

�
@T

@x

ÿ
�
2bxh 0

ch

�
@ 2T

@x @Z
� ST � 0 �8�

Here h '=(dh/dy )=ÿ(1/tan y ), and the boundary con-
ditions can be restated as

Double-trapezoidal duct:

w�ÿ1, Z� � w�1, Z� � w�x, 1� � 0,

T�ÿ1, Z� � T�1, Z� � T�x, 1� � 0 �9a�

Single-trapezoidal duct (in addition to Eq. (9a)):

w�x, 0� � 0, T�x, 0� � 0 �9b�

The symmetry condition of Eq. (5c) for the double-
trapezoidal duct is given by"�

b

c

�
@w

@Z
ÿ
�
xh 0

h

�
@w

@x

#
�x,0�
� 0,

"�
b

c

�
@T

@Z
ÿ
�
xh 0

h

�
@T

@x

#
�x,0�
� 0 �9c�

In order to determine the average frictional loss and

heat transfer coe�cient from the velocity and the tem-
perature distributions, the dimensionless bulk velocity
and temperature are calculated from their usual de®-

nitions as

Double-trapezoidal duct:

wb � 1

�2ÿ �g tan y��
�x�1
x�ÿ1

�Z�1
Z�0

wh dZ dx �10�

Tb � 1

�2ÿ �g tan y��
�x�1
x�ÿ1

�Z�1
Z�0

wh dZ dx �11�

Single-trapezoidal duct:

wb � 1

�2ÿ �2g tan y��
�x�1
x�ÿ1

�Z�1
Z�0

wh dZ dx �12�

Tb � 1

�2ÿ �2g tan y��
�x�1
x�ÿ1

�Z�1
Z�0

Th dZ dx �13�

Finally, the hydraulic-diameter based Fanning friction
factor is given by

f Re � �dh=b�2�1=2wb� �14�
and the fully-developed ¯ow Nusselt number, for both
H1 and T conditions, is given by

Nu � �dh=b�2�1=4Tb� �15�
The hydraulic diameters for the two ducts are calcu-
lated as

dh �8>>><>>>:
2c�2ÿ �g= tan y��

1ÿ �g= sin y��cos yÿ 1� �double-trapezoidal duct�

2c�2ÿ �g= tan y��
2ÿ �g= sin y��cos yÿ 1� �trapezoidal duct�

�16�

3. Computational methodology

The transformed governing partial di�erential
equations are discretized and solved using ®nite-di�er-
ence techniques. For all duct cross-section geometries

considered in this study, the computational domain in
(x, Z ) was described by a uniform grid. Second-order
accurate, central di�erencing was employed for the dis-

cretized representation of Eqs. (7) and (8).
Straightforward Dirichlet boundary conditions (w = 0
and T = 0) are applied at the walls; in the case of
double-trapezoidal ducts, however, second-order back-

ward di�erencing was used at the Z=0 ( y= 0) mid
plane to represent the Neumann or symmetry bound-
ary condition. Furthermore, Simpson's rule was

employed to carry out the numerical integration for
calculating the bulk velocity and temperature.
All computations were performed using a uniform

121 � 61 (x � Z ) grid, with the discretized equations
solved by the point-iterative Gauss±Siedel method.
The iterations were performed over the computational
domain bounded by Z=0 to Z=1. The convergence

criterion (maximum relative error in values of the
dependent variable between two successive iterations)
was set to 10ÿ6 in all cases. To test grid independence

of the computational solutions, the use of a 161 � 81
grid produced no change in the calculated values of f
Re and Nu (T and H1) in a regular hexagon duct

(y=608 and g=0.867).
The numerical accuracy of the computations was

primarily veri®ed by comparing the f Re and Nu (T
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and H1) values calculated from Eqs. (14) and (15), re-
spectively, with those obtained from the peripherally

averaged wall gradients given by

f Re � ÿ2dh

wb

�
wall

@w

@n

����
wall

ds �17�

Nu � ÿ dh

Tb

�
wall

@T

@n

����
wall

ds �18�

where n denotes the normal direction to the duct wall
and s is the distance along the duct wall. The di�er-

ences between the two sets of values obtained from
Eqs. (14), (15), (17) and (18) were generally less than
2%, with a maximum deviation of 4% in the results
for the duct with g=0.01. Additionally, as presented in

the next section, f Re and NuH1 results for single-trap-
ezoidal ducts are in excellent agreement with those
reported by Shah [19].

4. Results and discussion

Numerical solutions for fully developed laminar ¯ow

and heat transfer in a wide range of trapezoidal and
double-trapezoidal (hexagonal) duct geometries, that

represent ¯ow cross sections in many di�erent compact
heat exchange devices, are presented in the ensuing sec-
tions. The ¯ow and temperature distributions, along

with the friction factor and Nusselt numbers results,
highlight the in¯uence of the duct geometry (y and g )
and wall heating/cooling conditions on the thermal±

hydraulic performance and provide useful design data.

4.1. Trapezoidal ducts

The isothermal friction factor ( f Re ) and Nusselt

number (NuH1 and NuT) results for trapezoidal ducts
described by y=30, 45, 60, and 758, and varying aspect
ratios (g=c/2b; see Fig. 2) are presented in Figs. 4±6,
respectively. Here, the results for f Re and NuH1 also

serve to verify the accuracy of numerical solutions.
This is seen in Figs. 4 and 5, where they are compared
with the analytical solutions reported by Shah [19].

The excellent agreement between the two is clearly evi-
dent, and this amply validates the computational meth-
odology, grid selection, and the precision of the

numerical values.

Fig. 4. Variation of f Re with aspect ratio g of a trapezoidal

duct.

Fig. 5. Variation of NuH1 with aspect ratio g of a trapezoidal

duct.
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Figs. 4±6 clearly illustrate the in¯uence of the trap-
ezoidal ducts' geometrical features (described by y and

g ) on the fully developed laminar ¯ow f Re, NuH1 and
NuT, respectively. For the variation with g, the maxi-

mum aspect ratio for a given y-valued trapezoidal duct

is de®ned by the respective triangular duct limit. The
lower aspect ratio limit, is represented by the parallel-

plate duct when y4 0 or g4 0 ( f Re= 24,

NuH1=8.235 and NuT=7.541). For 08 < y < 608, in
Fig. 4, ( f Re ) is seen to monotonically decrease with

increasing g to the triangular duct limit. For
608 R y R 908, however, f Re is ®rst seen to decrease,

then increase before again decreasing to the triangular

duct limit with increasing g. The upper y-limit of the
duct geometry is described by y=908, or a rectangular

duct, and the f Re results given by Shah and London
[6] are also graphed in Fig. 4. These, of course, are

symmetric about g=1 (square duct). Similar behaviors

in the variation of NuH1 and NuT with y and g are
seen in Figs. 5 and 6, respectively.

The variation of f Re as well as Nu (for both T and

H1 boundary conditions) with aspect ratio for each y-
valued trapezoidal duct can be represented by the fol-
lowing polynomial in g:

f Re or

Nu � b0 � b1g� b2g2 � b3g3 � b4g4 � b5g5

� b6g6 � b7g7

�19�

The values of the constants b0±b7 are given in Table 1
for y=30, 45, 60 and 758 trapezoidal cross sections.
Eq. (19) describes the computed numerical values

within22% in all cases.

4.2. Double-trapezoidal ducts

In double-trapezoidal (or hexagonal) ducts, the lami-
nar fully developed velocity ®eld is strongly in¯uenced

by the aspect ratio of the ¯ow cross section. This is
seen in Fig. 7, where the velocity pro®les for three
di�erent aspect ratios (g=0.5, 1.5 and 2.5) of the duct
with included angle y=758 are presented. Note that

the duct geometry is symmetric about x- and y-axes,
and hence only a quadrant of the ¯ow cross section is
shown. The results indicate a rather complex inter-

action between the duct geometry and the developed
¯ow ®eld. As the aspect ratio increases (g>0), the ¯ow
gets `squeezed' into the core region by sharp corners of

the boundaries and the peak velocity increases. The
¯ow distribution (that is more `uniform' with large
wall gradients in small g ducts) gets more `conical'

Fig. 6. Variation of NuT with aspect ratio g of a trapezoidal

duct.

Fig. 7. Dimensionless isovelocity pro®les for fully developed

laminar ¯ow through double-trapezoidal ducts of three di�er-

ent aspect ratios and included angle y=758.
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with smaller velocity gradients at the wall.
Furthermore, for y=758 double-trapezoidal ducts, the

peak core velocity increases sharply as g increases from
0 to about 1.0, and then attains a plateau as g 4 2.5;

for higher g, wmax decreases slightly. This change in
magnitude of wmax can be ascertained from Table 2.

The in¯uence of duct geometry and ¯ow distribution
on the temperature ®eld is depicted in Fig. 8 for H1

boundary condition, and in Fig. 9 for the T boundary
condition. In both these ®gures, isotherms in y=758
double-trapezoidal ducts with g=0.5, 1.5 and 2.5 are
presented. Once again, re¯ecting the convective e�ects

of the ¯ow ®eld, the maximum core temperature
increases with increasing g, and representative values

for both H1 and T conditions are listed in Table 2.
The temperature ®eld correspondingly tends to be

more conical in pro®le, with smaller wall gradients.
However, the wall gradients are relatively sharper with

the H1 condition in comparison with the T boundary
condition.

Given the velocity and temperature ®elds, the vari-
ations with y and g in the concomitant fully developed

isothermal Fanning friction factors and Nusselt num-
bers are presented in Figs. 10±12. For each y-valued

double-trapezoidal duct, the limiting conditions for the

variation with aspect ratio are described by the results

for the parallel plate channel (g4 0) and those for

rhombic ducts (g4 gmax). The f Re and NuH1 results

for rhombic ducts have been previously reported by

Shah [19], and NuT results by Asako and Faghri [15].

Displaying a performance somewhat similar to trap-

ezoidal ducts, the impact of the double-trapezoidal (or

hexagonal) ¯ow cross-section geometry variations

on f Re, NuH1 and NuT is depicted in Figs. 10±12, re-

spectively. For y < 458 ducts, in Fig. 10 for example, f

Table 1

Values of constants b0±b7 in Eq. (19) for single trapezoidal ducts with four di�erent y angles

y=308 y=458 y=608 y=758

f Re NuH1 NuT f Re NuH1 NuT f Re NuH1 NuT f Re NuH1 NuT

b0 24.000 8.2350 7.5410 24.000 8.2350 7.5410 24.000 8.2350 7.5410 24.000 8.2350 7.5410

b1 ÿ66.335 ÿ36.138 ÿ39.551 ÿ40.015 ÿ28.188 ÿ29.251 ÿ38.909 ÿ20.951 ÿ23.175 ÿ33.658 ÿ17.642 ÿ20.183
b2 14.580 107.54 155.04 ÿ127.22 134.47 90.601 48.056 39.219 40.937 39.320 24.711 33.483

b3 540.43 ÿ1196.2 ÿ1699.6 1448.3 ÿ1206.2 ÿ535.56 ÿ44.278 ÿ82.077 ÿ34.727 ÿ18.584 ÿ16.852 ÿ26.286
b4 ÿ1618.9 6468.3 9621.5 ÿ5523.3 6854.2 2824.4 72.094 172.33 18.793 3.7740 7.0934 9.9036

b5 2478.5 ÿ7824.5 ÿ16592 10081 ÿ20679 ÿ8045.9 ÿ51.027 ÿ183.90 7.6346 ÿ0.45060 ÿ2.2892 ÿ1.4825
b6 0.000 ÿ8280.3 0.000 ÿ7035.6 31782 11583 0.000 70.105 0.000 0.000 0.39886 0.000

b7 0.000 0.000 0.000 0.000 ÿ19592 ÿ6702.8 0.000 0.000 0.000 0.000 0.000 0.000

Table 2

Maximum values of dimensionless velocities and temperatures

for fully developed laminar ¯ow in double-trapezoidal duct of

included angle y=758 and di�erent aspect ratios g

g wmax Tmax (H1) Tmax (T)

0.1 4.91Eÿ03 6.42Eÿ03 0.0112

0.5 0.1102 0.1667 0.2312

1.0 0.2623 0.3964 0.5218

1.5 0.3236 0.4918 0.6665

2.0 0.3377 0.5266 0.7575

2.5 0.3392 0.5531 0.8374

3.0 0.3387 0.5778 0.8932

3.5 0.3379 0.5935 0.9459

Fig. 8. Dimensionless temperature distribution in fully devel-

oped laminar ¯ow in double-trapezoidal duct of three di�er-

ent aspect ratios and included angle y=758 (H1 boundary

condition).
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Re is seen to decrease monotonically with increasing g
up to the limit represented by a rhombic duct. With

yr458, on the other hand, f Re ®rst decreases, and

then increases to a higher `plateau' value before ®nally

decreasing to the rhombic-duct limit. This behavior is

most pronounced in the y=758 double-trapezoid

ducts. Besides the parallel-plate and rhombic duct

limits, the results for rectangular ducts de®ne the

y=908 limit. These results are, of course, symmetric

about g=1 (square duct with y=908 or rhombic duct

with y=458). Figs. 11 and 12, respectively, show quali-

tatively similar NuH1 and NuT performances. Also, as

would be expected with the uniform heat ¯ux bound-
ary condition (H1) and the consequent steeper wall

temperature gradients, NuH1>NuT for all cases.

Finally, the computed results for f Re, NuH1, and
NuT in double-trapezoidal (hexagonal) ducts can be

correlated by the following polynomial in g for each y-
case:

Fig. 9. Dimensionless temperature distribution in fully devel-

oped laminar ¯ow in double-trapezoidal duct of three di�er-

ent aspect ratios and included angle y=758 (T boundary

condition).

Fig. 10. Variation of f Re with aspect ratio g of a double-

trapezoidal (hexagonal) duct.

Table 3

Values of constants c0±c8 in Eq. (20) for double-trapezoidal ducts with four di�erent y angles

y=308 y=458 y=608 y=758

f Re NuH1 NuT f Re NuH1 NuT f Re NuH1 NuT f Re NuH1 NuT

c0 24.000 8.2350 7.5410 24.000 8.2350 7.5410 24.000 8.2350 7.5410 24.000 8.2350 7.5410

c1 ÿ35.572 ÿ10.718 ÿ15.619 ÿ25.420 ÿ8.073 ÿ13.089 ÿ25.845 ÿ10.143 ÿ11.131 ÿ26.880 ÿ12.927 ÿ14.012
c2 ÿ0.6031 ÿ118.93 ÿ46.383 ÿ47.905 ÿ76.284 ÿ16.657 13.240 ÿ19.369 ÿ28.576 27.464 13.714 14.695

c3 171.31 939.99 339.03 473.67 479.40 135.66 42.287 126.62 196.47 ÿ12.308 ÿ6.3841 ÿ1.9451
c4 ÿ352.65 ÿ3139.4 ÿ682.51 ÿ1443.4 ÿ1269.5 ÿ251.14 ÿ90.073 ÿ262.88 ÿ434.82 2.5841 1.3521 ÿ7.0212
c5 271.91 5031.3 480.87 2223.1 1767.7 204.26 81.018 295.86 507.47 ÿ0.21431 ÿ0.10905 5.7802

c6 0.000 ÿ3079.8 0.000 ÿ1687.9 ÿ1247.6 ÿ63.553 ÿ35.797 ÿ190.22 ÿ331.80 0.000 0.000 ÿ2.0413
c7 0.000 0.000 0.000 498.34 0.000 0.000 6.1894 65.246 114.53 0.000 0.000 0.35003

c8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ÿ9.2412 ÿ16.238 0.000 0.000 ÿ0.02401
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f Re or

Nu � c0 � c1g� c2g2 � c3g3 � c4g4 � c5g5

� c6g6 � c7g7 � c8g8

�20�

The values of the constants, c0±c8, for each set of geo-
metries described by y=30, 45, 60 and 758 are listed in
Table 3. This equation describes the numerical results

for each y case and their variation with g to within
21.5%.

Acknowledgement

This study was supported in part by the National
Science Foundation under Grant nos CTS-9502128
(R.M.M.) and CTS-9733369 (M.A.J.).

References

[1] E.A.D. Saunders, Heat Exchangers: Selection, Design

and Construction, Longman, Harlow, UK, 1998.

[2] G. Walker, Industrial Heat Exchangers, Hemisphere,

New York, 1990.

[3] R.M. Manglik, Plate heat exchangers for process indus-

try applications: enhanced thermal±hydraulic character-

istics of chevron plates, in: R.M. Manglik, A.D. Kraus

(Eds.), Process, Enhanced and Multiphase Heat

Transfer, Begell House, New York, 1996, pp. 267±276.

[4] W.M. Kays, A.L. London, Compact Heat Exchangers,

McGraw-Hill, New York, 1984.

[5] S.M. Flockhart, R.S. Dhariwal, Experimental and nu-

merical investigation into the ¯ow characteristics of

channels etched in silicon, Journal of Fluids Engineering

120 (1998) 291±295.

[6] R.K. Shah, A.L. London, Laminar ¯ow forced convec-

tion in ducts, supplement 1, in: Advances in Heat

Transfer, Academic, New York, 1978.

Fig. 11. Variation of NuH1 with aspect ratio g of a double-

trapezoidal (hexagonal) duct.
Fig. 12. Variation of NuT with aspect ratio g of a double-

trapezoidal (hexagonal) duct.

R. Sadasivam et al. / Int. J. Heat Mass Transfer 42 (1999) 4321±43314330



[7] R.K. Shah, M.S. Bhatti, Laminar convective heat trans-

fer in ducts, in: S. Kakac° , R.K. Shah, W. Aung (Eds.),

Handbook of Single-Phase Convective Heat Transfer,

Wiley, New York, 1987 (Chapter 3).

[8] A. Lawal, A.S. Mujumdar, Laminar ¯ow and heat

transfer in power-law ¯uids ¯owing in arbitrary cross-

sectional ducts, Numerical Heat Transfer 8 (1985) 217±

244.

[9] R.M. Manglik, A.E. Bergles, Numerical modeling and

analysis of laminar ¯ow heat transfer in non-circular

compact channels, in: B. SundeÂ n, M. Faghri (Eds.),

Computer Simulations in Compact Heat Exchangers,

Computational Mechanics Publications, Southampton,

UK, 1998 (Chapter 2).

[10] R.M. Manglik, J. Ding, Laminar ¯ow heat transfer to

viscous power-law ¯uids in double-sine ducts,

International Journal of Heat and Mass Transfer 40

(1997) 1379±1390.

[11] R.M. Manglik, A.E. Bergles, Fully developed laminar

heat transfer in circular-segment ducts with uniform

wall temperature, Numerical Heat Transfer Part A 26

(1994) 499±519.

[12] T.M. Harms, M.A. Jog, R.M. Manglik, E�ect of tem-

perature dependent viscosity variations and boundary

conditions on fully developed laminar forced convection

in a semicircular duct, Journal of Heat Transfer 120

(1998) 600±605.

[13] S.G. Etemad, A.S. Mujumdar, E�ects of variable vis-

cosity and viscous dissipation on laminar convection

heat transfer of a power-law ¯uid in the entrance region

of a semi-circular duct, International Journal of Heat

and Mass Transfer 38 (1995) 2225±2238.

[14] R.M. Manglik, P. Fang, E�ect of eccentricity and ther-

mal boundary conditions on laminar fully developed

¯ow in annular ducts, International Journal of Heat

and Fluid Flow 16 (1995) 298±306.

[15] Y. Asako, M. Faghri, Three-dimensional laminar heat

transfer and ¯uid ¯ow characteristics in the entrance

region of a rhombic duct, Journal of Heat Transfer 110

(1988) 855±861.

[16] Y. Asako, M. Nakamura, M. Faghri, Developing lami-

nar ¯ow and heat transfer in the entrance region of

regular polygonal ducts, International Journal of Heat

and Mass Transfer 31 (1988) 2590±2593.

[17] S.G. Etemad, Laminar heat transfer to viscous non-

Newtonian ¯uids in non-circular ducts. PhD thesis,

Department of Chemical Engineering, McGill

University, Montreal, Canada, 1995.

[18] B. SundeÂ n, M. Faghri, Computer Simulations in

Compact Heat Exchangers, Computational Mechanics,

Southampton, UK, 1998.

[19] R.K. Shah, Laminar ¯ow friction and forced convection

heat transfer in ducts of arbitrary geometry,

International Journal of Heat and Mass Transfer 18

(1975) 849±862.

[20] B. Farhanieh, B. SundeÂ n, Three-dimensional laminar

¯ow and heat transfer in the entrance region of trap-

ezoidal ducts, International Journal of Numerical

Methods in Fluids 13 (1991) 537±556.

[21] Y. Asako, M. Faghri, B. SundeÂ n, Three-dimensional

laminar forced convection characteristics of wavy ducts

with trapezoidal cross section for plate-®n heat ex-

changer, in: B. SundeÂ n, M. Faghri (Eds.), Computer

Simulations in Compact Heat Exchangers,

Computational Mechanics Publications, Southampton,

UK, 1998 Chapter 3.

R. Sadasivam et al. / Int. J. Heat Mass Transfer 42 (1999) 4321±4331 4331


